
Sample Solutions

CENTRAL EUROPE REGIONAL CONTEST 2011

Czech Technical University in Prague

PRACTICE:

ANTS

Ants

 Ants are “interchangeable”

 => Meeting and “turning around” can

be ignored

 => Solution is trivial

PRACTICE:

ELECTRICIAN

Electrician

for (;;)

{

scanf("%d", &x);

if (x == 0) break;

printf((x == 2)

? "Bad luck!\n“

: "Electrician needs 1 trips.\n");

}

Sample Solutions

 Cards

 Vigenere

 Unique

 Trail

 Program

 Regulate

 Analyse

 Grille

 Unchange

 Execute

VIGENERE

GRILLE

Vigenere

Grille

 Pretty easy, wasn’t it?

EXECUTE

Stack Machine Executor

 Straightforward simulation

 Beware of

 Integer overflow (MUL)

PROGRAM

Stack Machine Programmer

 The machine language is limited

 Several ways to solve the problem

 Polynomial

 Linear combination of some values

 Implement EQ

 Implement IF/THEN 

Polynomial way

 1 3, 2  10, 3  20

 Polynomial: A.x2 + B.x + C

 A.12 + B.1 + C = 3

 A.22 + B.2 + C = 10

 A.32 + B.3 + C = 20

“Equals” implementation

 Sort inputs: 2 3 5 8 11

Q = (((X mod 11) mod 8) div 5)

 Q=1 iff X=5

 Q=0 otherwise

Q mul R (R – desired output for 5)

 Sum for all inputs:

 Q1.R1 + Q2.R2 + Q3.R3 + Q4.R4 + Q5.R5

ANALYSE

Vigenere Analyse

We try the cribs in all positions

A C E W S U Y A V D C E

B A N K

Y B Q L

Vigenere Analyse

We try the cribs in all positions

A C E W S U Y A V D C E

B A N K

Y B Q L

A D I H

Vigenere Analyse

We try the cribs in all positions

A C E W S U Y A V D C E

B A N K

Y B Q L

C V G J

A D I H

Vigenere Analyse

We try the cribs in all positions

A C E W S U Y A V D C E

Y B Q L

A D I H
M O N E Y

N N Q R T

C V G J

Analyse

 All placements of the first crib

 O(n.k)

 All placements of the second crib

 Test by hash map

 O(n.k . H)

Analyse

 Beware of

 Key length and repetitions

ABCAB  possible keys are ABC, ABCA

 Overlapping words

There should be “two words” in the text

Sample input/output had an example

REGULATE

Strange Regulations

 For each company,

the cables form linear paths only

We keep the disjoint-set information

 find

 union

 split

Regulate – Disjoint Sets

Regulate – Disjoint Sets

Strange Regulations

We need all operations quickly

 Tree-based structures

 Balancing!!

One query

 O(log n)

 O(sqrt(n)) – amortized (rebuild)

UNIQUE

Unique Encryption Keys

 Trivial solution: O(n) for each query

 Prepare a data structure

 Perform the lookups faster

Unique – possible solution

One possibility:

 Remember the “last previous” duplicity

2 6 12 5 6 4 7 6 7 14 2 14

X X X X 1 1 1 4 6 6 6 9

0 1 2 3 4 5 6 7 8 9 10 11

Unique Keys

Query is resolved in O(1)

2 6 12 5 6 4 7 6 7 14 2 14

X X X X 1 1 1 4 6 6 6 9

0 1 2 3 4 5 6 7 8 9 10 11

6 ≥ 3

Unique Keys

Query is resolved in O(1)

X X X X 1 1 1 4 6 6 6 9

0 1 2 3 4 5 6 7 8 9 10 11

1 < 2

2 6 12 5 6 4 7 6 7 14 2 14

OK

Unique – time complexity

 Lookup array prepared: O(n . log n)

 Using a map

One query: O(1)

CARDS

Card Game

One game = permutation

 Follow the position of all cards

 Each card “travels” in some cycle

 Periodically repeating occurrences

Card Game

 Each card “travels” in some cycle

 Periodically repeating occurrences

1 2 3 4 5 6 7 8 9 10

Card Game

When is the card “3” at position 6?

 In the game #3 and then every 7th game

 7.i + 3

1 2 3 4 5 6 7 8 9 10

Card Game

 Track all of the cards at all positions

 Card C is at the position P in the deck

 FCP + iCP.RCP

 never

Card Game

 All winning combinations (120 x N)

 1,2,3,4,5,x,x,x,x,x

 1,2,3,5,4,x,x,x,x,x

 1,2,4,3,5,x,x,x,x,x

 1,2,4,5,3,x,x,x,x,x

 1,2,5,3,4,x,x,x,x,x

 … etc.

Card Game

 For each winning combination

 Do the cards ever occur at those

places? When?

F1P + i1P.R1P

F2Q + i2Q.R2Q

F3S + i3S.R3S

F4T + i4T.R4T

F5U + i5U.R5U

Card Game

 Find the common occurrence

 Solving the Bezout’s identity

A.i + B.j = C

 Extended Euclidean algorithm

 gcd(A,B) divisible by C

TRAIL

Racing Car Trail

What we cannot use:

 Backtracking

 Dynamic programming

What to use?

 Graph theory

Trail – the graph

 Each position is a node

 Edge if the move is possible

Trail – key observation

We find the maximum matching

Trail – key observation

Maximum matching

 Start from an unmatched node => lose

Trail – key observation

 How to find answer to some node?

 Find maximum matching without it

 Try to find an augmenting path from it

Trail – key observation

 Does the augmenting path exist?

 YES => Alice can win

 NO => Alice will lose

Trail – time complexity

 Turn a matching (without one node)

into another by 1 augmenting path

O(n2) – the initial matching

O(n) for each node

 TOTAL: O(n2)

UNCHANGE

Unchanged Picture

1. Picture “normalization”

 Join overlapping and continuing lines

2. Compare two pictures

 Try to map one line in Picture 1

to all lines in Picture 2

 Check if it maps everything

Unchange – time complexity

 Comparing lines – hashing

 O(n^2 . H)

O(n^3) is too much!

Unchange – faster solution

 Find the “center of mass” X

 Points in the longest distance from X

map to each other

 “Tie-breakers”

 Not required in this contest

(1000 lines max)

Authors
Josef Cibulka

Jakub Černý

Zdeněk Dvořák

Martin Kačer

Jan Stoklasa

Jan Katrenic

Radek Pelánek

